
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT125

FEATURES

- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT125 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT125 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input (\overline{nOE}). A HIGH at \overline{nOE} causes the outputs to assume a HIGH impedance OFF-state.

The "125" is identical to the "126" but has active LOW enable inputs.

www.DataSQUICK REFERENCE DATA

GND = 0 V;	$T_{amb} = 25$	5 °C; t _r = t _f = 6 ns	
------------	----------------	--	--

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STWIBOL	FARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	12	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	22	24	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

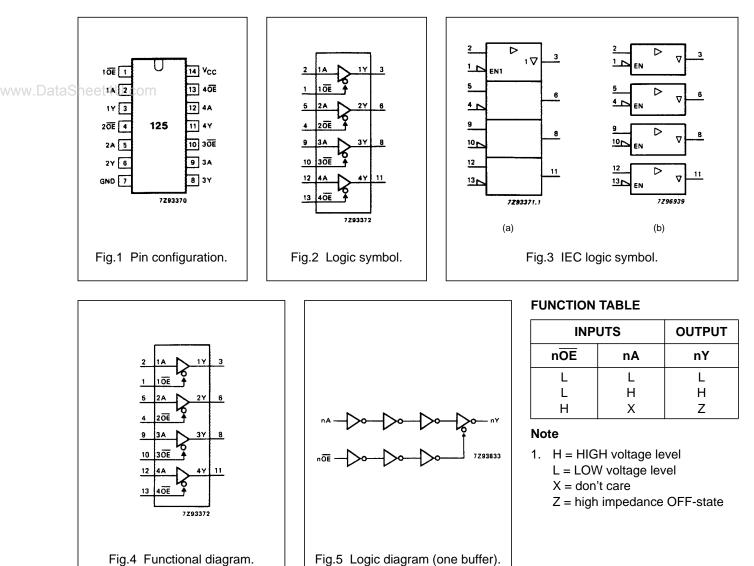
 $f_o = output frequency in MHz$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT125

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 4, 10, 13	10E to 40E	outputs enable inputs (active LOW)	
2, 5, 9, 12	1A to 4A	data inputs	
3, 6, 8, 11	1Y to 4Y	data outputs	
7	GND	ground (0 V)	
14	V _{CC}	positive supply voltage	

74HC/HCT125

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
	SYMBOL					74H0			WAVEFORMS			
			+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
vw.DataS			min.	typ.	max.	min.	max.	min.	max.		(-)	
vw.Datao	t _{PHL} / t _{PLH}	propagation delay		30	100		125		150	ns	2.0	Fig.6
		nA to nY		11	20		25		30		4.5	
				9	17		21		26		6.0	
	t _{PZH} / t _{PZL}	3-state output enable time		41	125		155		190	ns	2.0	Fig.7
		nOE to nY		15	25		31		38		4.5	
				12	21		26		32		6.0	
	t _{PHZ} / t _{PLZ}	3-state output disable time		41	125		155		190	ns	2.0	Fig.7
		$n\overline{OE}$ to nY		15	25		31		38		4.5	
				12	21		26		32		6.0	
	t _{THL} / t _{TLH}	output transition time		14	60		75		90	ns	2.0	Fig.6
				5	12		15		18		4.5	
				4	10		13		15		6.0	

74HC/HCT125

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, n OE	1.00

www.DataSheet4U.com

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS	
SYMBOL	PARAMETER	74HCT									WAVEFORMS
		+25			–40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORWIS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA to nY		15	25		31		38	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time $n\overline{OE}$ to nY		15	28		35		42	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time $n\overline{OE}$ to nY		15	25		31		38	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

74HC/HCT125

AC WAVEFORMS

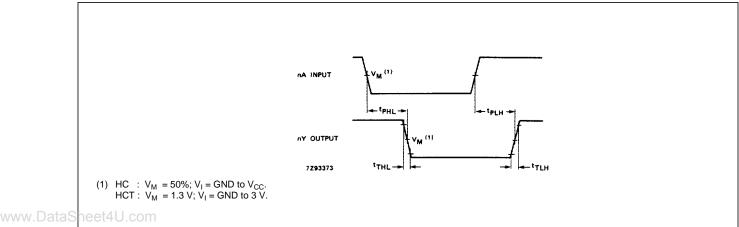
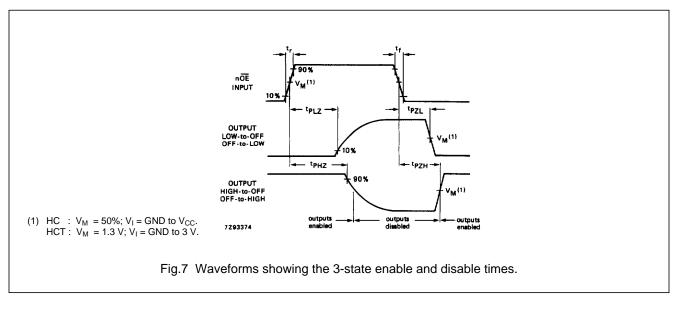



Fig.6 Waveforms showing the input (nA) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".